

1. For the following functions, determine the nature of the singularity at $z = z_0$ (i.e. regular point, pole or essential singularity), compute the residue, calculate the Laurent series and determine the radius of convergence.

(a) $f(z) = \frac{z^2+2z+1}{z^2-1}$, $z_0 = 1$.

(b) $f(z) = z^2 \sin(\frac{1}{z})$, $z_0 = 0$.

(c) $f(z) = e^{\frac{1}{z}} \sin(\frac{1}{z})$, $z_0 = 0$.

2. Consider the function

$$f(z) = \frac{\sin(z^2 + 1)}{(z^2 + 1)^2}.$$

(a) Find all the singularities of f and determine their nature.
 (b) Compute the residue at each singularity.
 (c) Determine the radius of convergence of the Laurent series around each singularity.

3. Consider the function

$$f(z) = \frac{\sin(z)}{(z+1)(z-2)(z^2+1)}.$$

(a) Find all the singularities of f and determine the order of the poles.
 (b) Let $\gamma(t) = 10e^{it}$, $t \in [0, 2\pi]$. Compute the integral

$$\int_{\gamma} f(z) dz.$$

4. Consider the function

$$f(z) = \frac{1}{z^4 - 1}.$$

(a) Find all the singularities of f and determine their nature.
 (b) Compute the integral

$$\int_{\gamma_r} f(z) dz$$

for any value of $r \neq 1$, where γ_r is the circle of radius r centered at the origin and oriented counter-clockwise.

5. For the following functions, compute the *singular* part of their Laurent series at $z = z_0$ and determine the radius of convergence of the (full) Laurent series.

(a) $f(z) = \frac{\sin(z)}{\sin(z^2)}$, $z_0 = 0$.

(b) $f(z) = \frac{1}{\cos(\frac{\pi}{2}z)}$, $z_0 = 1$.

(c) $f(z) = \frac{\log(1+z)}{\sin(z^2)}$, $z_0 = 0$.

(d) $f(z) = \frac{\sin(z)}{z \cdot (e^z - 1)}$, $z_0 = 0$.

6. (*The nature of essential singularities.*) In this exercise, we will consider the function $f(z) = e^{\frac{1}{z}}$.

(a) Show that $f(z)$ has an essential singularity at $z_0 = 0$.

(b) Show that in any neighborhood of $z_0 = 0$, f attains every value of \mathbb{C}^* infinitely often. More formally, you have to show the following: For any $R > 0$ and any $y \in \mathbb{C}$, there exist infinitely many z 's with $|z| < R$ such that $f(z) = y$. (*Hint: If w_0 satisfies $e^{w_0} = y$, what are the other w 's satisfying $e^w = y$?*)

Remark. In general, if a function f has an essential singularity at $z = z_0$, then in any neighborhood of z_0 the function will attain all values in \mathbb{C} with the exception of at most one, infinitely many times. This is known as Picard's great theorem.

(c) Show that the above cannot be true for a function $g(z)$ with a pole at $z = 0$: In this case, show that, for $R > 0$, the function g restricted on the disc $B_R(0)$ only takes values satisfying $|g(z)| \geq R_1(R)$ with $R_1(R) \rightarrow +\infty$ as $R \rightarrow 0$.

Solutions

1. (a)

$$f(z) = \frac{z^2 + 2z + 1}{z^2 - 1}, z_0 = 1$$

1. Nature of the singularity:

Factorize the denominator:

$$z^2 - 1 = (z - 1)(z + 1)$$

At $z_0 = 1$, the factor $(z - 1)$ appears in the denominator, but not in the numerator. Note, in particular, that $(z - 1)$ appears to the first power in the denominator. In particular, we can express f as

$$f(z) = \frac{\left(\frac{z^2 + 2z + 1}{z + 1}\right)}{z - 1} = \frac{g(z)}{z - 1},$$

where the function $g(z) = \frac{(z^2+2z+1)}{z+1} = z+1$ is holomorphic at $z = 1$. Hence, we calculate

$$\lim_{z \rightarrow 1} ((z-1) \cdot f(z)) = \lim_{z \rightarrow 1} g(z) = g(1) = 2 \neq 0.$$

Therefore, it is a simple pole (that is to say, a pole of order 1).

2. Residue: For a simple pole at $z = z_0$, the residue is given by:

$$\text{Res}_{z_0}(f) = \lim_{z \rightarrow z_0} (z - z_0) f(z)$$

Here, $z_0 = 1$, and we computed this integral above:

$$\text{Res}_1(f) = \lim_{z \rightarrow 1} (z-1) \frac{z^2 + 2z + 1}{(z-1)(z+1)} = 2.$$

3. Laurent series: Since $z_0 = 1$ is a simple pole, the Laurent series around $z_0 = 1$ has the form:

$$f(z) = \frac{a_{-1}}{z-1} + a_0 + a_1(z-1) + a_2(z-1)^2 + \dots$$

We already found $a_{-1} = 2$. To find the other coefficients, we can rewrite $f(z)$ in terms of $(z-1)$:

$$f(z) = \frac{(z+1)^2}{(z-1)(z+1)} = \frac{z+1}{z-1}$$

Expand $\frac{z+1}{z-1}$ around $z = 1$:

$$\frac{z+1}{z-1} = \frac{(z-1)+2}{z-1} = 1 + \frac{2}{z-1}$$

Thus, the Laurent series is:

$$f(z) = \frac{2}{z-1} + 1$$

4. Radius of convergence: The Laurent series has radius of convergence $R = 2$, since the next singularity is at $z = -1$, which is 2 units away from $z = 1$.

(b) $f(z) = z^2 \sin\left(\frac{1}{z}\right)$, $z_0 = 0$

1. Nature of the singularity: Consider the series expansion of $\sin\left(\frac{1}{z}\right)$ (see also Exercise 3.a from the previous week):

$$\sin\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! z^{2n+1}}$$

Multiplying by z^2 :

$$f(z) = z^2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! z^{2n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! z^{2n-1}}$$

This series has infinitely many negative powers of z , indicating that $z_0 = 0$ is an essential singularity.

2. Residue: The residue is the coefficient of $\frac{1}{z}$ in the Laurent series:

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!z^{2n-1}}$$

The term $\frac{1}{z}$ corresponds to $2n-1=1$, i.e., $n=1$. Therefore, the residue is:

$$\text{Res}_0(f) = \frac{(-1)^1}{3!} = -\frac{1}{6}.$$

3. Laurent series: The Laurent series is already derived:

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!z^{2n-1}}$$

4. Radius of convergence: The Laurent series converges for all $z \neq 0$, since there are no other singularities. Therefore, the radius of convergence is ∞ .

(c)

$$f(z) = e^{\frac{1}{z}} \sin\left(\frac{1}{z}\right), z_0 = 0$$

Using the identity

$$\sin(w) = \frac{e^{iw} - e^{-iw}}{2i},$$

we can reexpress the above as

$$f(z) = \frac{1}{2i} \left(e^{(1+i)\frac{1}{z}} - e^{(1-i)\frac{1}{z}} \right).$$

1. Nature of the singularity: Consider the series expansions:

$$e^{\frac{1+i}{z}} = \sum_{n=0}^{\infty} \frac{(1+i)^n}{n!z^n}, \quad e^{\frac{1-i}{z}} = \sum_{n=0}^{\infty} \frac{(1-i)^n}{n!z^n}.$$

Subtracting the two, we get

$$f(z) = \frac{1}{2i} \left(e^{(1+i)\frac{1}{z}} - e^{(1-i)\frac{1}{z}} \right) = \sum_{n=0}^{\infty} \frac{\frac{1}{2i} \left((1+i)^n - (1-i)^n \right)}{n!} \frac{1}{z^n}.$$

Using the fact that

$$(1+i)^n - (1-i)^n = (1+i)^n \left(1 - \left(\frac{1-i}{1+i} \right)^n \right) = (1+i)^n (1 - (-i)^n),$$

we can readily verify that the coefficients of the above series are non zero except in the case when $n = 4k$, so we have a series with infinitely many negative powers of z , indicating that $z_0 = 0$ is an essential singularity.

2. Residue: The residue is the coefficient of $\frac{1}{z}$ in the Laurent series. From the above computation, we therefore get for $n = 1$:

$$\text{Res}_0(f) = \frac{\frac{1}{2i}((1+i)^1 - (1-i)^1)}{1!} = 1.$$

3. We computed the Laurent series.

4. Radius of convergence: The Laurent series converges for all $z \neq 0$, since there are no other singularities. Therefore, the radius of convergence is ∞ .

2. (a) 1. Singularities: The denominator $(z^2 + 1)^2$ has zeros at $z^2 + 1 = 0$, i.e., $z = \pm i$. These are the singularities of f .

2. Nature of the singularities: Let us expand the numerator as a series: Since

$$\sin(w) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} w^{2n+1}$$

for any w (the above power series has infinite radius of convergence), plugging in $w = z^2 + 1$ we get:

$$\sin(z^2 + 1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (z^2 + 1)^{2n+1} = (z^2 + 1) - \frac{1}{6}(z^2 + 1)^3 + \dots$$

Therefore,

$$f(z) = \frac{(z^2 + 1) - \frac{1}{6}(z^2 + 1)^3 + \dots}{(z^2 + 1)^2} = \frac{1 - \frac{1}{6}(z^2 + 1)^2 + \dots}{z^2 + 1}.$$

From the above, we see that, since $z^2 + 1 = (z - i)(z + i)$, at $z = i$ the denominator has a simple root, while the numerator doesn't vanish; similarly at $z = -i$. Hence, $z = \pm i$ are simple poles (i.e. of order 1):

$$\lim_{z \rightarrow i} (z - i) f(z) = \lim_{z \rightarrow i} \left[(z - i) \frac{1 - \frac{1}{6}(z^2 + 1)^2 + \dots}{(z - i)(z + i)} \right] \lim_{z \rightarrow i} \frac{1 - \frac{1}{6}(z^2 + 1)^2 + \dots}{z + i} = \frac{1}{2i} \neq 0$$

and, similarly

$$\lim_{z \rightarrow -i} (z + i) f(z) = \lim_{z \rightarrow -i} \left[(z + i) \frac{1 - \frac{1}{6}(z^2 + 1)^2 + \dots}{(z - i)(z + i)} \right] \lim_{z \rightarrow -i} \frac{1 - \frac{1}{6}(z^2 + 1)^2 + \dots}{z - i} = -\frac{1}{2i} \neq 0$$

(b) 1. Residue at $z = i$: For a pole of order 1, the residue is given by:

$$\text{Res}_{z_0}(f) = \lim_{z \rightarrow z_0} ((z - z_0) f(z)).$$

For $z_0 = \pm i$, we calculated these limits above. So

$$\text{Res}_i(f) = \frac{1}{2i}, \quad \text{Res}_{-i}(f) = -\frac{1}{2i}.$$

(c) 1. Radius of convergence: The Laurent series at z_0 converges in the set $B_R(z_0) \setminus \{z_0\}$, where R is the distance from z_0 of the nearest point where f is not holomorphic. Since the singularities are at $z = \pm i$, the radius of convergence around each singularity is the distance to the other singularity, which is 2.

3. (a) The denominator $(z + 1)(z - 2)(z^2 + 1)$ has zeros at $z = -1$, $z = 2$, and $z = \pm i$. These are the singularities of f .

Each factor appears to be the first power in the denominator, while the numerator $\sin(z)$ doesn't vanish at these points. So each singularity is a simple pole. We can calculate:

$$\lim_{z \rightarrow -1} \left[(z + 1) \cdot \frac{\sin(z)}{(z + 1)(z - 2)(z^2 + 1)} \right] = \lim_{z \rightarrow -1} \left[\frac{\sin(z)}{(z - 2)(z^2 + 1)} \right] = -\frac{1}{2} \sin(1) \neq 0,$$

$$\lim_{z \rightarrow 2} \left[(z - 2) \cdot \frac{\sin(z)}{(z + 1)(z - 2)(z^2 + 1)} \right] = \lim_{z \rightarrow 2} \left[\frac{\sin(z)}{(z + 1)(z^2 + 1)} \right] = \frac{1}{15} \sin(2) \neq 0,$$

$$\begin{aligned} \lim_{z \rightarrow i} \left[(z - i) \cdot \frac{\sin(z)}{(z + 1)(z - 2)(z - i)(z + i)} \right] &= \lim_{z \rightarrow i} \left[\frac{\sin(z)}{(z + 1)(z - 2)(z + i)} \right] \\ &= \frac{1}{2i(i + 1)(i - 2)} \sin(i) = \frac{1}{2(i + 1)(i - 2)} \sinh(1) \neq 0, \end{aligned}$$

$$\begin{aligned} \lim_{z \rightarrow -i} \left[(z + i) \cdot \frac{\sin(z)}{(z + 1)(z - 2)(z - i)(z + i)} \right] &= \lim_{z \rightarrow -i} \left[\frac{\sin(z)}{(z + 1)(z - 2)(z - i)} \right] \\ &= -\frac{1}{2i(i - 1)(i + 2)} \sin(-i) = \frac{1}{2(i - 1)(i + 2)} \sinh(1) \neq 0, \end{aligned}$$

(b) 1. Integral: The contour $\gamma(t) = 10e^{it}$ is a circle of radius 10 centered at the origin. The singularities inside this contour are $z = -1$, $z = 2$, and $z = \pm i$. By the Residue Theorem:

$$\int_{\gamma} f(z) dz = 2\pi i (\text{Res}_{-1}(f) + \text{Res}_2(f) + \text{Res}_i(f) + \text{Res}_{-i}(f)).$$

Compute each residue using the formula for simple poles:

$$\text{Res}(f, z_0) = \lim_{z \rightarrow z_0} (z - z_0) f(z).$$

These are precisely the limits we calculated above, so

$$\int_{\gamma} f(z) dz = 2\pi i \left(-\frac{1}{2} \sin(1) + \frac{1}{15} \sin(2) + \frac{1}{2} \left(\frac{1}{(1+i)(i-2)} + \frac{1}{(i-1)(i+2)} \right) \sinh(1) \right).$$

4. (a) Find all the singularities of f and determine their nature.

1. Singularities: The denominator $z^4 - 1 = (z^2 - 1)(z^2 + 1) = (z - 1)(z + 1)(z - i)(z + i)$ has zeros at $z = \pm 1$ and $z = \pm i$. These are the singularities of f .

2. Nature of the singularities: Each factor appears to the first power in the denominator, while the numerator doesn't vanish anywhere. So each singularity is a simple pole (the corresponding limit $\lim_{z \rightarrow z_0} (z - z_0)f(z)$ exists and is non-zero).

(b) Compute the integral $\int_{\gamma_r} f(z) dz$ for any value of $r \neq 1$, where γ_r is the circle of radius r centered at the origin and oriented counter-clockwise.

1. Integral: The contour γ_r is a circle of radius r centered at the origin. The singularities inside this contour depend on r :

- * If $r < 1$, there are no singularities inside the contour.
- * If $r > 1$, the singularities inside the contour are $z = \pm 1$ and $z = \pm i$. By the Residue Theorem:

$$\int_{\gamma_r} f(z) dz = 2\pi i (\text{Res}_1(f) + \text{Res}_{-1}(f) + \text{Res}_i(f) + \text{Res}_{-i}(f))$$

Compute each residue using the formula for simple poles:

$$\text{Res}_{z_0}(f) = \lim_{z \rightarrow z_0} (z - z_0)f(z).$$

So we have:

$$\text{Res}_1(f) = \lim_{z \rightarrow 1} \left[(z - 1) \frac{1}{(z - 1)(z + 1)(z - i)(z + i)} \right] = \lim_{z \rightarrow 1} \frac{1}{(z + 1)(z - i)(z + i)} = \frac{1}{4}$$

and, similarly:

$$\text{Res}_{-1}(f) = -\frac{1}{4}, \quad \text{Res}_i(f) = \frac{i}{4}, \quad \text{Res}_{-i}(f) = -\frac{i}{4}.$$

So, in this case:

$$\int_{\gamma_r} f(z) dz = 0$$

- * If $r = 1$, the integral is not well defined, as the singularities lie on the curve.

Remark. In the case of a holomorphic function that satisfies $Q(z) = Q(-z)$ (like $z^4 - 1$ in the above exercise; if Q is a polynomial, this holds exactly when it only has even powers of z), we have that, if z_0 is a root of Q , then so is $-z_0$. From the definition of the limit giving as the residue, it is easy to see that, if z_0 is a simple root of Q , then

$$\text{Res}_{-z_0}\left(\frac{1}{Q(z)}\right) = -\text{Res}_{z_0}\left(\frac{1}{Q(z)}\right).$$

Similarly, if $\overline{Q(z)} = Q(\bar{z})$ (if Q is polynomial, this happens exactly when Q has real coefficients), we can similarly easily check that

$$\text{Res}_{\bar{z}_0}\left(\frac{1}{Q(z)}\right) = \overline{\text{Res}_{z_0}\left(\frac{1}{Q(z)}\right)}.$$

The above symmetries can sometimes help us avoid repetitive calculations.

5. (a)

$$f(z) = \frac{\sin(z)}{\sin(z^2)}, z_0 = 0$$

1. Singular part: The Taylor series for $\sin(z)$ around $z = 0$ is:

$$\sin(z) = z - \frac{z^3}{6} + \frac{z^5}{120} - \dots$$

The Taylor series for $\sin(z^2)$ around $z = 0$ is:

$$\sin(z^2) = z^2 - \frac{z^6}{6} + \frac{z^{10}}{120} - \dots$$

Therefore, the function $f(z)$ can be written as:

$$f(z) = \frac{z - \frac{z^3}{6} + \frac{z^5}{120} - \dots}{z^2 - \frac{z^6}{6} + \frac{z^{10}}{120} - \dots} = \frac{z}{z^2} \cdot \frac{1 - \frac{z^2}{6} + \frac{z^4}{120} - \dots}{1 - \frac{z^4}{6} + \frac{z^8}{120} - \dots} = \frac{1}{z} \cdot \frac{1 - \frac{z^2}{6} + \dots}{1 - \frac{z^4}{6} + \dots}.$$

Therefore, $z \cdot f(z)$ has a regular point at $z = 0$:

$$\lim_{z \rightarrow 0} (z \cdot f(z)) = \lim_{z \rightarrow 0} \frac{1 - \frac{z^2}{6} + \dots}{1 - \frac{z^4}{6} + \dots} = 1 \neq 0.$$

So f has a pole of order 1 at $z = 0$. This means that the Laurent series is of the form

$$f(z) = \frac{c_{-1}}{z} + c_0 + c_1 z + \dots,$$

so the singular part has only one term: $\frac{c_{-1}}{z}$. The coefficient c_{-1} is exactly what we computed above:

$$c_{-1} = \lim_{z \rightarrow 0} (z \cdot f(z)) = 1.$$

2. Radius of convergence: The radius of convergence of the Laurent series is determined by the distance to the nearest singularity other than $z = 0$. The next singularity of $\sin(z^2)$ is at $z = \pm\sqrt{\pi}$, which is approximately ± 1.77 . Therefore, the radius of convergence is:

$$\sqrt{\pi} = 1.77 \dots$$

(b)

$$f(z) = \frac{1}{\cos\left(\frac{\pi}{2}z\right)}, z_0 = 1$$

1. Singular part: The above function has a pole of order 1 at $z_0 = 1$ so, like before, the singular part consists of only one term. Let us first verify that indeed we have a simple pole at $z_0 = 1$: We have

$$\begin{aligned} \cos\left(\frac{\pi}{2}z\right) &= \cos\left(\frac{\pi}{2}(z-1) + \frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}(z-1)\right) \\ &= -\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{2}\right)^{2n+1} (z-1)^{2n+1} \\ &= \frac{\pi}{2}(z-1) - \frac{1}{6} \frac{\pi^3}{8}(z-1)^3 + \dots \end{aligned}$$

Therefore, the function $f(z)$ can be written as:

$$f(z) = \frac{1}{\cos\left(\frac{\pi}{2}z\right)} = \frac{1}{\frac{\pi}{2}(z-1) - \frac{1}{6} \frac{\pi^3}{8}(z-1)^3 + \dots} = \frac{1}{z-1} \cdot \frac{1}{\frac{\pi}{2} - \frac{1}{6} \frac{\pi^3}{8}(z-1)^2 + \dots}.$$

Thus,

$$\lim_{z \rightarrow 1} (z-1)f(z) = \frac{1}{\frac{\pi}{2}} = \frac{2}{\pi} \neq 0,$$

so f has a pole of order 1 at $z_0 = 1$. The singular part is simply $\frac{c_{-1}}{z}$, with $c_{-1} = \frac{2}{\pi}$ (in view of the limit we just calculated).

2. Radius of convergence: The radius of convergence of the Laurent series is determined by the distance to the nearest singularity other than $z = 1$. The next singularity of $\cos\left(\frac{\pi}{2}z\right)$ is at $z = 3$. Therefore, the radius of convergence is 2.

(c)

$$f(z) = \frac{\log(1+z)}{\sin(z^2)}, z_0 = 0$$

1. Singular part: The Taylor series for $\log(1+z)$ around $z = 0$ is:

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots$$

The Taylor series for $\sin(z^2)$ around $z = 0$ is:

$$\sin(z^2) = z^2 - \frac{z^6}{6} + \dots$$

Therefore, the function $f(z)$ can be written as:

$$f(z) = \frac{z - \frac{z^2}{2} + \frac{z^3}{3} - \dots}{z^2 - \frac{z^6}{6} + \dots} = \frac{1}{z} \cdot \frac{1 - \frac{z}{2} + \frac{z^2}{3} - \dots}{1 - \frac{z^4}{6} + \dots}.$$

So, f has a pole of order 1 at 0:

$$\lim_{z \rightarrow 0} z f(z) = 1.$$

Like before, the singular part of the Laurent series consists of only one term: $\frac{1}{z}$.

2. Radius of convergence: The radius of convergence of the Laurent series is determined by the distance to the nearest other point where f is not holomorphic. The nearest other roots of $\sin(z^2)$ are $\pm\sqrt{\pi}$, but note also that the function $\log(1+z)$ is holomorphic only on $\mathbb{C} \setminus (-\infty, -1]$. Hence, the radius of convergence is equal to 1 (the distance to $z = -1$).

(d)

$$f(z) = \frac{\sin(z)}{z(e^z - 1)}, z_0 = 0$$

1. Singular part: The Taylor series for $\sin(z)$ around $z = 0$ is:

$$\sin(z) = z - \frac{z^3}{6} + \frac{z^5}{120} - \dots$$

The Taylor series for $e^z - 1$ around $z = 0$ is:

$$e^z - 1 = z + \frac{z^2}{2} + \frac{z^3}{6} + \dots$$

Therefore, the function $f(z)$ can be written as:

$$f(z) = \frac{z - \frac{z^3}{6} + \dots}{z(z + \frac{z^2}{2} + \dots)} = \frac{1 - \frac{z^2}{6} + \dots}{z + \frac{z^2}{2} + \dots} = \frac{1}{z} \cdot \frac{1 - \frac{z^2}{6} + \dots}{1 + \frac{z}{2} + \dots}.$$

Therefore,

$$\lim_{z \rightarrow 0} z \cdot f(z) = 1,$$

so f has a pole of order 1 and $c_{-1} = 1$. Thus, the singular part of the Laurent series is: $\frac{1}{z}$.

2. Radius of convergence: The radius of convergence of the Laurent series is determined by the distance to the nearest singularity other than $z = 0$. The next singularities of $e^z - 1$ are at $z = \pm 2\pi i$. Therefore, the radius of convergence is 2π .

6. (a) Essential singularity: The Laurent series of $e^{\frac{1}{z}}$ around $z = 0$ is:

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n! z^n}$$

This series has infinitely many negative powers of z , so $z = 0$ is an essential singularity.

(b) We will show that, for any $R > 0$ and any $y \in \mathbb{C}^*$, there exist infinitely many points z in $B_R(0)$ solving $e^{\frac{1}{z}} = y$. First of all, such a y , let $w = \log(y)$, so that $e^w = y$. For any $n \in \mathbb{Z}$, the points

$$w_n = w + 2\pi n i$$

also satisfy $e^{w_n} = e^{w+2\pi ni} = e^w = y$. Let us set

$$z_n = \frac{1}{w_n} = \frac{1}{2 + 2\pi ni}$$

Note that

$$e^{\frac{1}{z_n}} = y.$$

Moreover,

$$\lim_{n \rightarrow +\infty} z_n \lim_{n \rightarrow +\infty} \frac{1}{w + 2\pi ni} = 0.$$

Therefore, for any $R > 0$, there exists a $n_0 \geq 1$ such that, for any $n \geq n_0$, the point z_n satisfies $|z_n| < R$. Thus, we have infinitely many solutions z_n to the equation $e^{\frac{1}{z_n}} = y$ in $B_R(0)$.

(c) We will now show that the above cannot be true for a function $g(z)$ with a pole at $z = 0$. If g has a pole of order m at z_0 , then we can write for z near z_0 :

$$g(z) = \frac{h(z)}{(z - z_0)^m},$$

where $h(z)$ is holomorphic at z_0 and $h(z_0) \neq 0$. Therefore, we can easily calculate that

$$\lim_{z \rightarrow z_0} |g(z)| = \lim_{z \rightarrow z_0} \frac{|h(z)|}{|z - z_0|^m} = +\infty,$$

since $\lim_{z \rightarrow z_0} |h(z)| = |h(z_0)| \neq 0$ and $\lim_{z \rightarrow z_0} |z - z_0|^m = 0$. This means that, for any given $y \in \mathbb{C}$, we cannot have a sequence of points $z_n \xrightarrow{n \rightarrow +\infty} z_0$ solving $g(z_n) = y$; if that was the case, then we would have

$$|y| = \lim_{n \rightarrow +\infty} |g(z_n)| = +\infty \quad \text{since} \quad \lim_{z \rightarrow z_0} |g(z)| = +\infty,$$

which would be a contradiction. In particular, this means that there is a radius $R > 0$ such that no solution z of $g(z) = y$ lies in $|z - z_0| \leq R$ (because if the opposite was true, namely that the disc $B_R(z_0)$ contains a solution z_R of $g(z) = y$ for any $R > 0$, then as $R \rightarrow 0$ we could get a sequence of such solutions approaching z_0).