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1. For the following functions, determine the nature of the singularity at z = z0 (i.e. regular point,
pole or essential singularity), compute the residue, calculate the Laurent series and determine
the radius of convergence.

(a) f(z) = z2+2z+1
z2−1

, z0 = 1.

(b) f(z) = z2 sin(1
z
), z0 = 0.

(c) f(z) = e
1
z sin(1

z
), z0 = 0.

2. Consider the function

f(z) =
sin(z2 + 1)

(z2 + 1)2
.

(a) Find all the singularities of f and determine their nature.

(b) Compute the residue at each singularity.

(c) Determine the radius of convergence of the Laurent series around each singularity.

3. Consider the function

f(z) =
sin(z)

(z + 1)(z − 2)(z2 + 1)
.

(a) Find all the singularities of f and determine the order of the poles.

(b) Let γ(t) = 10eit, t ∈ [0, 2π]. Compute the integral

�
γ

f(z) dz.

4. Consider the function

f(z) =
1

z4 − 1
.

(a) Find all the singularities of f and determine their nature.

(b) Compute the integral �
γr

f(z) dz

for any value of r ̸= 1, where γr is the circle of radius r centered at the origin and oriented
counter-clockwise.
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5. For the following functions, compute the singular part of their Laurent series at z = z0 and
determine the radius of convergence of the (full) Laurent series.

(a) f(z) =
sin(z)

sin(z2)
, z0 = 0.

(b) f(z) =
1

cos(π
2
z)
, z0 = 1.

(c) f(z) =
log(1 + z)

sin(z2)
, z0 = 0.

(d) f(z) =
sin(z)

z · (ez − 1)
, z0 = 0.

6. (The nature of essential singularities.) In this exercise, we will consider the function f(z) = e
1
z .

(a) Show that f(z) has an essential singularity at z0 = 0.

(b) Show that in any neighborhood of z0 = 0, f attains every value of C∗ in�nitely often.
More formally, you have to show the following: For any R > 0 and any y ∈ C, there exist
in�nitely many z's with |z| < R such that f(z) = y. (Hint: If w0 satis�es ew0 = y, what
are the other w's satisfying ew = y?)

Remark. In general, if a function f has an essential singularity at z = z0, then in any
neighborhood of z0 the function will attain all values in C with the exception of at most
one, in�nitely many times. This is known as Picard's great theorem.

(c) Show that the above cannot be true for a function g(z) with a pole at z = 0: In this
case, show that, for R > 0, the function g restricted on the disc BR(0) only takes values
satisfying |g(z)| ⩾ R1(R) with R1(R) → +∞ as R → 0.

Solutions

1. (a)

f(z) =
z2 + 2z + 1

z2 − 1
, z0 = 1

1. Nature of the singularity:
Factorize the denominator:

z2 − 1 = (z − 1)(z + 1)

At z0 = 1, the factor (z− 1) appears in the denominator, but not in the numerator. Note,
in particular, that (z − 1) appears to the �rst power in the denominator. In particular,
we can express f as

f(z) =

(
z2+2z+1

z+1

)
z − 1

=
g(z)

z − 1
,
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where the function g(z) = (z2+2z+1)
z+1

= z + 1 is holomorphic at z = 1. Hence, we calculate

lim
z→1

(
(z − 1) · f(z)

)
= lim

z→1
g(z) = g(1) = 2 ̸= 0.

Therefore, it is a simple pole (that is to say, a pole of order 1).

2. Residue: For a simple pole at z = z0, the residue is given by:

Resz0(f) = lim
z→z0

(z − z0)f(z)

Here, z0 = 1, and we computed this integral above:

Res1(f) = lim
z→1

(z − 1)
z2 + 2z + 1

(z − 1)(z + 1)
= 2.

3. Laurent series: Since z0 = 1 is a simple pole, the Laurent series around z0 = 1 has the
form:

f(z) =
a−1

z − 1
+ a0 + a1(z − 1) + a2(z − 1)2 + . . .

We already found a−1 = 2. To �nd the other coe�cients, we can rewrite f(z) in terms of
(z − 1):

f(z) =
(z + 1)2

(z − 1)(z + 1)
=

z + 1

z − 1

Expand z+1
z−1

around z = 1:

z + 1

z − 1
=

(z − 1) + 2

z − 1
= 1 +

2

z − 1

Thus, the Laurent series is:

f(z) =
2

z − 1
+ 1

4. Radius of convergence: The Laurent series has radius of convergence R = 2, since the
next singularity is at z = −1, which is 2 units away from z = 1.

(b) f(z) = z2 sin
(
1
z

)
, z0 = 0

1. Nature of the singularity: Consider the series expansion of sin
(
1
z

)
(see also Exercise

3.a from the previous week):

sin

(
1

z

)
=

∞∑
n=0

(−1)n

(2n+ 1)!z2n+1

Multiplying by z2:

f(z) = z2
∞∑
n=0

(−1)n

(2n+ 1)!z2n+1
=

∞∑
n=0

(−1)n

(2n+ 1)!z2n−1
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This series has in�nitely many negative powers of z, indicating that z0 = 0 is an essential
singularity.

2. Residue: The residue is the coe�cient of 1
z
in the Laurent series:

f(z) =
∞∑
n=0

(−1)n

(2n+ 1)!z2n−1

The term 1
z
corresponds to 2n− 1 = 1, i.e., n = 1. Therefore, the residue is:

Res0(f) =
(−1)1

3!
= −1

6
.

3. Laurent series: The Laurent series is already derived:

f(z) =
∞∑
n=0

(−1)n

(2n+ 1)!z2n−1

4. Radius of convergence: The Laurent series converges for all z ̸= 0, since there are no
other singularities. Therefore, the radius of convergence is ∞.

(c)

f(z) = e
1
z sin

(
1

z

)
, z0 = 0

Using the identity

sin(w) =
eiw − e−iw

2i
,

we can reexpress the above as

f(z) =
1

2i

(
e(1+i) 1

z − e(1−i) 1
z

)
.

1. Nature of the singularity: Consider the series expansions:

e
1+i
z =

∞∑
n=0

(1 + i)n

n!zn
, e

1−i
z =

∞∑
n=0

(1− i)n

n!zn
.

Subtracting the two, we get

f(z) =
1

2i

(
e(1+i) 1

z − e(1−i) 1
z

)
=

∞∑
n=0

1
2i

(
(1 + i)n − (1− i)n

)
n!

1

zn
.

Using the fact that

(1 + i)n − (1− i)n = (1 + i)n
(
1−

(1− i

1 + i

)n)
= (1 + i)n(1− (−i)n),
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we can readily verify that the coe�cients of the above series are non zero except in the
case when n = 4k, so we have a series with in�nitely many negative powers of z, indicating
that z0 = 0 is an essential singularity.

2. Residue: The residue is the coe�cient of 1
z
in the Laurent series. From the above

computation, we therefore get for n = 1:

Res0(f) =
1
2i

(
(1 + i)1 − (1− i)1

)
1!

= 1.

3. We computed the Laurent series.

4. Radius of convergence: The Laurent series converges for all z ̸= 0, since there are no
other singularities. Therefore, the radius of convergence is ∞.

2. (a) 1. Singularities: The denominator (z2 + 1)2 has zeros at z2 + 1 = 0, i.e., z = ±i. These
are the singularities of f .

2. Nature of the singularities: Let us expand the numerator as a series: Since

sin(w) =
∞∑
n=0

(−1)n

(2n+ 1)!
w2n+1

for any w (the above power series has in�nite radius of convergence), plugging in w = z2+1
we get:

sin(z2 + 1) =
∞∑
n=0

(−1)n

(2n+ 1)!
(z2 + 1)2n+1 = (z2 + 1)− 1

6
(z2 + 1)3 + . . . .

Therefore,

f(z) =
(z2 + 1)− 1

6
(z2 + 1)3 + . . .

(z2 + 1)2
=

1− 1
6
(z2 + 1)2 + . . .

z2 + 1
.

From the above, we see that, since z2 +1 = (z− i)(z + i), at z = i the denominator has a
simple root, while the numerator doesn't vanish; similarly at z = −i. Hence, z = ±i are
simple poles (i.e. of order 1):

lim
z→i

(z − i)f(z) = lim
z→i

[
(z − i)

1− 1
6
(z2 + 1)2 + . . .

(z − i)(z + i)

]
lim
z→i

1− 1
6
(z2 + 1)2 + . . .

z + i
=

1

2i
̸= 0

and, similarly

lim
z→−i

(z + i)f(z) = lim
z→−i

[
(z + i)

1− 1
6
(z2 + 1)2 + . . .

(z − i)(z + i)

]
lim
z→−i

1− 1
6
(z2 + 1)2 + . . .

z − i
= − 1

2i
̸= 0

(b) 1. Residue at z = i: For a pole of order 1, the residue is given by:

Resz0(f) = lim
z→z0

((z − z0)f(z)) .

For z0 = ±i, we calculated these limits above. So

Resi(f) =
1

2i
, Res−i(f) = − 1

2i
.
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(c) 1. Radius of convergence: The Laurent series at z0 converges in the set BR(z0) \ {z0},
where R is the distance from z0 of the nearest point where f is not holomorphic. Since
the singularities are at z = ±i, the radius of convergence around each singularity is the
distance to the other singularity, which is 2.

3. (a) The denominator (z + 1)(z − 2)(z2 + 1) has zeros at z = −1, z = 2, and z = ±i. These
are the singularities of f .

Each factor appears to be the �rst power in the denominator, while the numerator sin(z)
doesn't vanish at these points. So each singularity is a simple pole. We can calculate:

lim
z→−1

[
(z + 1) · sin(z)

(z + 1)(z − 2)(z2 + 1)

]
= lim

z→−1

[
sin(z)

(z − 2)(z2 + 1)

]
= −1

2
sin(1) ̸= 0,

lim
z→2

[
(z − 2) · sin(z)

(z + 1)(z − 2)(z2 + 1)

]
= lim

z→2

[
sin(z)

(z + 1)(z2 + 1)

]
=

1

15
sin(2) ̸= 0,

lim
z→i

[
(z − i) · sin(z)

(z + 1)(z − 2)(z − i)(z + i)

]
= lim

z→i

[
sin(z)

(z + 1)(z − 2)(z + i)

]
=

1

2i(i+ 1)(i− 2)
sin(i) =

1

2(i+ 1)(i− 2)
sinh(1) ̸= 0,

lim
z→−i

[
(z + i) · sin(z)

(z + 1)(z − 2)(z − i)(z + i)

]
= lim

z→−i

[
sin(z)

(z + 1)(z − 2)(z − i)

]
=− 1

2i(i− 1)(i+ 2)
sin(−i) =

1

2(i− 1)(i+ 2)
sinh(1) ̸= 0.

(b) 1. Integral: The contour γ(t) = 10eit is a circle of radius 10 centered at the origin. The
singularities inside this contour are z = −1, z = 2, and z = ±i. By the Residue Theorem:

�
γ

f(z) dz = 2πi (Res−1(f) + Res2(f) + Resi(f) + Res−i(f)) .

Compute each residue using the formula for simple poles:

Res(f, z0) = lim
z→z0

(z − z0)f(z).

These are precisely the limits we calculated above, so

�
γ

f(z) dz = 2πi

(
−1

2
sin(1) +

1

15
sin(2) +

1

2

( 1

(1 + i)(i− 2)
+

1

(i− 1)(i+ 2)

)
sinh(1)

)
.
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4. (a) Find all the singularities of f and determine their nature.

1. Singularities: The denominator z4 − 1 = (z2 − 1)(z2 + 1) = (z − 1)(z + 1)(z − i)(z + i)
has zeros at z = ±1 and z = ±i. These are the singularities of f .

2. Nature of the singularities: Each factor appears to the �rst power in the denominator,
while the numerator doesn't vanish anywhere. So each singularity is a simple pole (the
corresponding limit limz→z0(z − z0)f(z) exists and is non-zero).

(b) Compute the integral
�
γr
f(z) dz for any value of r ̸= 1, where γr is the circle of radius r

centered at the origin and oriented counter-clockwise.

1. Integral: The contour γr is a circle of radius r centered at the origin. The singularities
inside this contour depend on r:

* If r < 1, there are no singularities inside the contour.

* If r > 1, the singularities inside the contour are z = ±1 and z = ±i. By the Residue
Theorem: �

γr

f(z) dz = 2πi (Res1(f) + Res−1(f) + Resi(f) + Res−i(f))

Compute each residue using the formula for simple poles:

Resz0(f) = lim
z→z0

(z − z0)f(z).

So we have:

Res1(f) = lim
z→1

[
(z−1)

1

(z − 1)(z + 1)(z − i)(z + i)

]
== lim

z→1

1

(z + 1)(z − i)(z + i)
=

1

4

and, similarly:

Res−1(f) = −1

4
, Resi(f) =

i

4
, Res−i(f) = − i

4
.

So, in this case: �
γr

f(z) dz = 0

* If r =, the integral is not well de�ned, as the singularities lie on the curve.

Remark. In the case of a holomorphic function that satis�es Q(z) = Q(−z) (like z4 − 1
in the above exercise; if Q is a polynomial, this holds exactly when it only has even powers
of z), we have that, if z0 is a root of Q, then so is −z0. From the de�nition of the limit
giving as the residue, it is easy to see that, if z0 is a simple root of Q, then

Res−z0(
1

Q(z)
) = −Resz0(

1

Q(z)
).
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Similarly, if Q(z) = Q(z̄) (if Q is polynomial, this happens exactly when Q has real
coe�cients), we can similarly easily check that

Resz̄0(
1

Q(z)
) = Resz0(

1

Q(z)
).

The above symmetries can sometimes help us avoid repetitive calculations.

5. (a)

f(z) =
sin(z)

sin(z2)
, z0 = 0

1. Singular part: The Taylor series for sin(z) around z = 0 is:

sin(z) = z − z3

6
+

z5

120
− · · ·

The Taylor series for sin(z2) around z = 0 is:

sin(z2) = z2 − z6

6
+

z10

120
− · · ·

Therefore, the function f(z) can be written as:

f(z) =
z − z3

6
+ z5

120
− · · ·

z2 − z6

6
+ z10

120
− · · ·

=
z

z2
·
1− z2

6
+ z9

120
− . . .

1− z4

6
+ z8

120
− . . .

=
1

z
·
1− z2

6
+ . . .

1− z4

6
+ . . .

.

Therefore, z · f(z) has a regular point at z = 0:

lim
z→0

(
z · f(z)

)
= lim

z→0

1− z2

6
+ . . .

1− z4

6
+ . . .

= 1 ̸= 0.

So f has a pole of order 1 at z = 0. This means that the Laurent series is of the form

f(z) =
c−1

z
+ c0 + c1z + . . . ,

so the singular part has only one term: c−1

z
. The coe�cient c−1 is exactly what we

computed above:
c−1 = lim

z→0

(
z · f(z)

)
= 1.

2. Radius of convergence: The radius of convergence of the Laurent series is determined
by the distance to the nearest singularity other than z = 0. The next singularity of sin(z2)
is at z = ±

√
π, which is approximately ±1.77. Therefore, the radius of convergence is:

√
π = 1.77 . . . .
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(b)

f(z) =
1

cos
(
π
2
z
) , z0 = 1

1. Singular part: The above function has a pole of order 1 at z0 = 1 so, like before, the
singular part consists of only one term. Let us �rst verify that indeed we have a simple
pole at z0 = 1: We have

cos(
π

2
z) = cos

(π
2
(z − 1) +

π

2

)
= − sin

(π
2
(z − 1)

)
= −

∞∑
n=0

(−1)n

(2n+ 1)!
(
π

2
)2n+1(z − 1)2n+1

=
π

2
(z − 1)− 1

6

π3

8
(z − 1)3 + . . . .

Therefore, the function f(z) can be written as:

f(z) =
1

cos
(
π
2
z
) =

1
π
2
(z − 1)− 1

6
π3

8
(z − 1)3 + . . .

=
1

z − 1
· 1

π
2
− 1

6
π3

8
(z − 1)2 + . . .

.

Thus,

lim
z→1

(z − 1)f(z) =
1
π
2

=
2

π
̸= 0,

so f has a pole of order 1 at z0 = 1. The singular part is simply c−1

z
, with c−1 = 2

π
(in

view of the limit we just calculated).

2. Radius of convergence: The radius of convergence of the Laurent series is determined by
the distance to the nearest singularity other than z = 1. The next singularity of cos

(
π
2
z
)

is at z = 3. Therefore, the radius of convergence is 2.

(c)

f(z) =
log(1 + z)

sin(z2)
, z0 = 0

1. Singular part: The Taylor series for log(1 + z) around z = 0 is:

log(1 + z) = z − z2

2
+

z3

3
− · · ·

The Taylor series for sin(z2) around z = 0 is:

sin(z2) = z2 − z6

6
+ · · ·

Therefore, the function f(z) can be written as:

f(z) =
z − z2

2
+ z3

3
− · · ·

z2 − z6

6
+ · · ·

=
1

z
·
1− z

2
+ z2

3
− . . .

1− z4

6
+ . . .

.
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So, f has a pole of order 1 at 0:
lim
z→0

zf(z) = 1.

Like before, the singular part of the Laurent series consists of only one term: 1
z
.

2. Radius of convergence: The radius of convergence of the Laurent series is determined
by the distance to the nearest other point where f is not holomorphic. The nearest other
roots of sin(z2) are ±

√
π, but note also that the function log(1 + z) is holomorphic only

on C \ (−∞,−1]. Hence, the radius of convergence is equal to 1 (the distance to z = −1).

(d)

f(z) =
sin(z)

z(ez − 1)
, z0 = 0

1. Singular part: The Taylor series for sin(z) around z = 0 is:

sin(z) = z − z3

6
+

z5

120
− · · ·

The Taylor series for ez − 1 around z = 0 is:

ez − 1 = z +
z2

2
+

z3

6
+ · · ·

Therefore, the function f(z) can be written as:

f(z) =
z − z3

6
+ · · ·

z(z + z2

2
+ · · · )

=
1− z2

6
+ · · ·

z + z2

2
+ · · ·

=
1

z
·
1− z2

6
+ · · ·

1 + z
2
+ · · ·

.

Therefore,
lim
z→0

z · f(z) = 1,

so f has a pole of order 1 and c−1 = 1. Thus, the singular part of the Laurent series is: 1
z
.

2. Radius of convergence: The radius of convergence of the Laurent series is determined
by the distance to the nearest singularity other than z = 0. The next singularities of ez−1
are at z = ±2πi. Therefore, the radius of convergence is 2π.

6. (a) Essential singularity: The Laurent series of e
1
z around z = 0 is:

e
1
z =

∞∑
n=0

1

n!zn

This series has in�nitely many negative powers of z, so z = 0 is an essential singularity.

(b) We will show that, for any R > 0 and any y ∈ C
∗, there exist in�nitely many points z

in BR(0) solving e
1
z = y. First of all, such a y, let w = log(y), so that ew = y. For any

n ∈ Z, the points
wn = w + 2πni
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also satisfy ewn = ew+2πni = ew = y. Let us set

zn =
1

wn

=
1

2 + 2πni

Note that
e

1
zn = y.

Moreover,

lim
n→+∞

zn lim
n→+∞

1

w + 2πni
= 0.

Therefore, for any R > 0, there exists a n0 ⩾ 1 such that, for any n ⩾ n0, the point zn
satis�es |zn| < R. Thus, we have in�nitely many solutions zn to the equation e

1
zn = y in

BR(0).

(c) We will now show that the above cannot be true for a function g(z) with a pole at z = 0.
If g has a pole of order m at z0, then we can write for z near z0:

g(z) =
h(z)

(z − z0)m
,

where h(z) is holomorphic at z0 and h(z0) ̸= 0. Therefore, we can easily calculate that

lim
z→z0

|g(z)| = lim
z→z0

|h(z)|
|z − z0|m

= +∞,

since limz→z0 |h(z)| = |h(z0)| ̸= 0 and limz→z0 |z − z0|m = 0. This means that, for any

given y ∈ C, we cannot have a sequence of points zn
n→+∞−−−−→ z0 solving g(zn) = y; if that

was the case, then we would have

|y| = lim
n→+∞

|g(zn)| = +∞ since lim
z→z0

|g(z)| = +∞,

which would be a contradiction. In particular, this means that there is a radius R > 0
such that no solution z of g(z) = y lies in |z − z0| ⩽ R (because if the opposite was true,
namely that the disc BR(z0) contains a solution zR of g(z) = y for any R > 0, then as
R → 0 we could get a sequence of such solutions approaching z0).
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