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1. For the following functions, determine the nature of the singularity at z = 2y (i.e. regular point,
pole or essential singularity), compute the residue, calculate the Laurent series and determine
the radius of convergence.

(a) f(z) =235 2 = 1.
(b) f(2)
(c) f(2)

2?sin(2), 29 = 0.

1
z
%), 20 = 0.

e= sin(

2. Consider the function in(22 1 1)
sin(z” +
(a) Find all the singularities of f and determine their nature.

(b) Compute the residue at each singularity.

(c) Determine the radius of convergence of the Laurent series around each singularity.

3. Consider the function
sin(z)

1) = ey

(a) Find all the singularities of f and determine the order of the poles.
(b) Let v(t) = 10e”, t € [0,27]. Compute the integral

l f(2) d=.

4. Consider the function ]

24 -1

f(z) =

(a) Find all the singularities of f and determine their nature.

ﬁ S

for any value of r # 1, where 7, is the circle of radius r centered at the origin and oriented
counter-clockwise.

(b) Compute the integral

Page 1



EPFL- Spring 2025 G. Moschidis

Series 6

MATH 207(c)—Analysis IV 25 Mar. 2025

5. For the following functions, compute the singular part of their Laurent series at z = 2, and
determine the radius of convergence of the (full) Laurent series.

(a)
(b)
(c)
(d)

6. (The nature of essential singularities.) In this exercise, we will consider the function f(z) = e=.

(a)
(b)

(c)

f(2) = ;zlé;)), =0,
f(z) = Cos(lgz), = 1.
f(z) = % 2= 0.
FO) = gy =0

1

Show that f(z) has an essential singularity at zo = 0.

Show that in any neighborhood of zy = 0, f attains every value of C* infinitely often.
More formally, you have to show the following: For any R > 0 and any y € C, there exist
infinitely many z’s with |z| < R such that f(z) = y. (Hint: If wo satisfies €*° =y, what
are the other w’s satisfying e* = y?%)

Remark. In general, if a function f has an essential singularity at z = zy, then in any
neighborhood of zy the function will attain all values in C with the exception of at most
one, infinitely many times. This is known as Picard’s great theorem.

Show that the above cannot be true for a function g(z) with a pole at z = 0: In this
case, show that, for R > 0, the function g restricted on the disc Br(0) only takes values
satisfying |g(2)| = R1(R) with R;(R) — +o0 as R — 0.

Solutions

1. (a)

1. Nature of the singularity:
Factorize the denominator:
2 —1=(z-1(z+1)

At zy = 1, the factor (z — 1) appears in the denominator, but not in the numerator. Note,
in particular, that (z — 1) appears to the first power in the denominator. In particular,

we can express [ as
(z2+2z+1) g(z)
flz) = ~—"t—=

z—1 z—1’
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(b)

_(2242241)

where the function g(z) 1

= 2z + 1 is holomorphic at z = 1. Hence, we calculate

lim ((z — 1) - f(z)) = limg(z) = g(1) =2 # 0.

z—1 z—1
Therefore, it is a simple pole (that is to say, a pole of order 1).
2. Residue: For a simple pole at z = z;, the residue is given by:

Res.(f) = lim (z — 2) f(2)

Z—20

Here, zo = 1, and we computed this integral above:

Res; (f) = ll_I}l}(Z - 1)% =2

3. Laurent series: Since zy = 1 is a simple pole, the Laurent series around zy = 1 has the
form:

f(z) = ::11 +ag+ai(z—1)+ay(z—1)*+...

We already found a_; = 2. To find the other coefficients, we can rewrite f(z) in terms of
(z—1):
(z+1)? 241

&) = ey~ 721

Expand £} around z = 1:

z+1  (z2—-1)+2 2

z—1 z—1 +z—1

Thus, the Laurent series is:
2
f(z) = +1

z—1

4. Radius of convergence: The Laurent series has radius of convergence R = 2, since the
next singularity is at z = —1, which is 2 units away from z = 1.

f(z) =2%sin (1), 2 =0
1. Nature of the singularity: Consider the series expansion of sin(
3.a from the previous week):

1

1) (see also Exercise

(2) = s

n=0

Multiplying by z2:

TR S G VAR — S G O
fz) =2 2o (2n + 1)1 ; (2n + 1)lz2n
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This series has infinitely many negative powers of z, indicating that zy = 0 is an essential
singularity.
2. Residue: The residue is the coefficient of % in the Laurent series:

2:: 2n—|—1 '22” 1

The term % corresponds to 2n — 1 =1, i.e., n = 1. Therefore, the residue is:

Reso(f) = (_31') = —é.

3. Laurent series: The Laurent series is already derived:

= (="
2) = Z (2n + 1)!z2n—1

n=0

4. Radius of convergence: The Laurent series converges for all z # 0, since there are no
other singularities. Therefore, the radius of convergence is oco.

flz) = e+ sin (1) ,20=10

z

Using the identity

we can reexpress the above as

T2

1. Nature of the singularity: Consider the series expansions:

> (1+4)" > (1—qa)"
Z nlzn -’ Z nlzn

n=0 n=0

Subtracting the two, we get

£(2) = e+t — -it) AR ' —(-i) 1

21

Using the fact that

") = (i) - (i)

(A== =040 (1= (s
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we can readily verify that the coefficients of the above series are non zero except in the
case when n = 4k, so we have a series with infinitely many negative powers of z, indicating
that 2y = 0 is an essential singularity.

2. Residue: The residue is the coefficient of % in the Laurent series. From the above
computation, we therefore get for n = 1:
1 N1 1
> (1+2) —(1—2
ReSo(f):QZ(( )1, ( )):1
3. We computed the Laurent series.
4. Radius of convergence: The Laurent series converges for all z # 0, since there are no
other singularities. Therefore, the radius of convergence is oo.
2. (a) 1. Singularities: The denominator (22 + 1)? has zeros at 2 + 1 = 0, i.e., z = +i. These

(b)

are the singularities of f.
2. Nature of the singularities: Let us expand the numerator as a series: Since

. - - (_1)n 2n+1
sin(w) = ; mw

for any w (the above power series has infinite radius of convergence), plugging in w = z2+1
we get:

sin(z? +1) = » %(2 + 1) = (2 1) — 1(z2 + 1)+ ...

—~ (2n+1) 6
Therefore,
Fo) = (2 4+1) = (P +1)°+... 1 (2 +1)°+...
“= (224 1)2 N 22+1 '
From the above, we see that, since 22 +1 = (2 —i)(z + 1), at z = i the denominator has a
simple root, while the numerator doesn’t vanish; similarly at 2 = —i. Hence, z = +i are
simple poles (i.e. of order 1):
1—32+1)2 4+ ... 1—32+1)2 + 1
. o 1 o 6 6 _
L e e 1A
and, similarly
1-i2+1)2+ 1—2(22+1)+ 1
. . T . 6 6 - _

1. Residue at z = i: For a pole of order 1, the residue is given by:
Res.,(f) = lim (2 = ) ()

For zy = +i, we calculated these limits above. So
1

Res;(f) = %, Res_;(f) = —5
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(c)

3. (a)

(b)

1. Radius of convergence: The Laurent series at zy converges in the set Br(zo) \ {20},
where R is the distance from 2, of the nearest point where f is not holomorphic. Since
the singularities are at z = 41, the radius of convergence around each singularity is the
distance to the other singularity, which is 2.

The denominator (z + 1)(z — 2)(2% + 1) has zeros at z = —1, z = 2, and 2z = +i. These
are the singularities of f.

Each factor appears to be the first power in the denominator, while the numerator sin(z)
doesn’t vanish at these points. So each singularity is a simple pole. We can calculate:

, sin(z) L sin(z) B lsin
L R [P Ty | B [(Z “orn| - WA
. sin(z) B sin(z) 1 sin
9g[@_2y(z+nu—2xﬁ+1) el e Il T Ol
lim | (2 — ) - sin(z) sin(z)
2 (z+1)(z=2)(z—d)(z+1i)| ==i|(z+1)(z—2)(z+1)
1 ) 1

2i(i+ )i —2) "

sin(z)
(z+ 1) (z—2)(z—1)
1

BT ) R

sin(z)
(z+1D(z—=2)(z—i)(z+1)

lim =
z2——1

(z+1) -

z——1

-T2 )7

1. Integral: The contour y(t) = 10e™ is a circle of radius 10 centered at the origin. The
singularities inside this contour are z = —1, 2z = 2, and z = 4i. By the Residue Theorem:

/f(z) dz = 2mi (Res_1(f) + Resa(f) + Res;(f) + Res_;(f)) .

Compute each residue using the formula for simple poles:

Res(f,20) = lim (z — 20) f(2).

Z—r20
These are precisely the limits we calculated above, so

. 1. 1 . 1 1 1 .
Lf(z) dz = 2mi (—551n(1)—|—1—551n(2)+5((1+i)(i_2) + iz 1)(2,_'_2))Slnh(1)).

Page 6



EPFL- Spring 2025 G. Moschidis

Series 6 MATH 207(C)_AnaIYSiS 1V 25 Mar. 2025

4. (a) Find all the singularities of f and determine their nature.
1. Singularities: The denominator 2% —1 = (22 = 1)(2?+1) = (z = 1)(z + 1)(z — i) (2 +19)
has zeros at z = £1 and z = +¢. These are the singularities of f.
2. Nature of the singularities: Each factor appears to the first power in the denominator,
while the numerator doesn’t vanish anywhere. So each singularity is a simple pole (the
corresponding limit lim, ,,,(z — 2¢) f(2) exists and is non-zero).

(b) Compute the integral fv f(2) dz for any value of r # 1, where , is the circle of radius r
centered at the origin and oriented counter-clockwise.
1. Integral: The contour +, is a circle of radius r centered at the origin. The singularities
inside this contour depend on 7:
« If r < 1, there are no singularities inside the contour.

« If r > 1, the singularities inside the contour are z = +1 and z = +i. By the Residue
Theorem:

/ f(2)dz = 2mi (Res1(f) + Res_1(f) + Res;(f) + Res_;(f))

Compute each residue using the formula for simple poles:

Res,, (f) = lim (z — 20) f(2).

Z—r20

So we have:

1

1
1 (z4+ 1) (z—i)(z+1i) 4

. 1
Resy(f) = lim [<Z_1)(z “ D+ 1)z —i)(z+19)

and, similarly:

Res_1(f) = —i, Res;(f) = i, Res_;(f) = —i.

So, in this case:

/%f(z)dz:()

x If r =, the integral is not well defined, as the singularities lie on the curve.

Remark. In the case of a holomorphic function that satisfies Q(2) = Q(—z) (like 2% — 1
in the above exercise; if () is a polynomial, this holds exactly when it only has even powers
of z), we have that, if z is a root of @, then so is —z;. From the definition of the limit
giving as the residue, it is easy to see that, if zy is a simple root of (), then

1 1

Res_., (W) = —ResZO(W

).
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5. (a)

Similarly, if Q(z) = Q(z) (if @ is polynomial, this happens exactly when ) has real
coefficients), we can similarly easily check that

b b
Q(2) Q(z)

The above symmetries can sometimes help us avoid repetitive calculations.

Resz, ( ) = Res,( ).

f(2) = sin(z) =0

sin(z2)

1. Singular part: The Taylor series for sin(z) around z = 0 is:

2 2P
5111(2):2—6—1-@—
The Taylor series for sin(z?) around z = 0 is:
6 10
sin(zQ)ZZQ—%+1ZTO—---

Therefore, the function f(z) can be written as:

3 5 2 9 2
1) 2=+ 5 z l-2 45— 1 1—%+4...
Z: _ — _— — .
2 28 4 20 2 2ty 28 > oz
< 6 T 120 1-% +1% 1 -5+

Therefore, z - f(z) has a regular point at z = 0:

lim (z - f(z)) = lim —5%—— =1#£0.

z—0 z—>01_é_|_

So f has a pole of order 1 at z = 0. This means that the Laurent series is of the form

c_
f(z) :71—1—004—612—1—...,

so the singular part has only one term: 0*71 The coefficient c¢_; is exactly what we

computed above:

oy =lim(z- f(2)) = 1.

z—0

2. Radius of convergence: The radius of convergence of the Laurent series is determined
by the distance to the nearest singularity other than z = 0. The next singularity of sin(z?)
is at z = ++/m, which is approximately +1.77. Therefore, the radius of convergence is:

VT =177,
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(b) X
f(z) =

= 2y =1
CoS (gz) 20

1. Singular part: The above function has a pole of order 1 at zy = 1 so, like before, the
singular part consists of only one term. Let us first verify that indeed we have a simple
pole at zo = 1: We have

cos(gz) = cos (g(z -1+ g) = —sin (g(z —1))

= —1)" T o n+1
—- Y G

o 2n + 1

T 173
= —(z2—1)—=—(2—1)3
R e

1 1 1 1
f(Z) - s — T 173 3 - T 173 2
cos (2z) Te—1) -5z -1+ z—=1 Z -2 (z—-1)2+

Thus,
. 1 2
lim(z — /() = = = = 40,
z—1 5

so [ has a pole of order 1 at zp = 1. The singular part is simply <+, with c_; = % (in

view of the limit we just calculated).
2. Radius of convergence: The radius of convergence of the Laurent series is determined by
the distance to the nearest singularity other than z = 1. The next singularity of cos (gz)
is at z = 3. Therefore, the radius of convergence is 2.

(c)

_ log(1+ 2)

© sin(2?)

f(2) ,20=0

1. Singular part: The Taylor series for log(1 + z) around z = 0 is:

2?2 28
log(1 — L, 42
og(l+2) == 5+ 3
The Taylor series for sin(2?) around z = 0 is:
6
Sin(zz) :Z2_Z_+
6
Therefore, the function f(z) can be written as:
22 Z3 z 22
f(z):Z—g—i‘?—"' :1 1—54‘?—...
T TR S S
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(d)

6. (a)

(b)

So, f has a pole of order 1 at 0:
limzf(z) = 1.

z—0

Like before, the singular part of the Laurent series consists of only one term: %

2. Radius of convergence: The radius of convergence of the Laurent series is determined
by the distance to the nearest other point where f is not holomorphic. The nearest other
roots of sin(z?) are +/7, but note also that the function log(1 + z) is holomorphic only
on C\ (—oo, —1]. Hence, the radius of convergence is equal to 1 (the distance to z = —1).

sin(z)

= - pum O
f(Z) Z(@Z—l)’zo
1. Singular part: The Taylor series for sin(z) around z = 0 is:
) 3 . 5
sin(z) =2z — — + — —
6 120

The Taylor series for e* — 1 around z = 0 is:

22 Z3
Pel=24 4
€ z 5 6

Therefore, the function f(z) can be written as:

23 22 z2
f() Z—g-{—"' 1—§+"' 1 1—?
Z) = — R
dz+E4) 2+ E 4 2 LEF4
Therefore,
limz- f(z) =1,
z—0

so f has a pole of order 1 and ¢_; = 1. Thus, the singular part of the Laurent series is: %

2. Radius of convergence: The radius of convergence of the Laurent series is determined
by the distance to the nearest singularity other than z = 0. The next singularities of e* —1
are at z = +2mi. Therefore, the radius of convergence is 2.

. . . . 1 .
Essential singularity: The Laurent series of ez around z = 0 is:
o0
1 1
= i
n=0

This series has infinitely many negative powers of z, so z = 0 is an essential singularity.

We will show that, for any R > 0 and any y € C*, there exist infinitely many points z
in Br(0) solving ez = y. First of all, such a y, let w = log(y), so that ¥ = y. For any
n € Z, the points

w, =W + 2mni
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(c)

also satisfy e¥n = e® 2™ — o% — ¢ Let us set

1 1
Z=— =
w, 242t
Note that )
eZ —= y
Moreover,

lim z, lim ; =0
n—+o0o  m—+oo W + 27N
Therefore, for any R > 0, there exists a ng > 1 such that, for any n > ng, the point z,
satisfies |z,| < R. Thus, we have infinitely many solutions z, to the equation e = y in
Bgr(0).
We will now show that the above cannot be true for a function g(z) with a pole at z = 0.
If g has a pole of order m at 2y, then we can write for z near z:

h(z)

9(z) = m,

where h(z) is holomorphic at zg and h(zp) # 0. Therefore, we can easily calculate that

h
lim |g(2)] = tim AL _ oo
Z—20 z—20 |Z — Zo|m
since lim,_,,, |h(z)| = |h(20)| # 0 and lim,_,,, |z — 2|™ = 0. This means that, for any

given y € C, we cannot have a sequence of points z, UimanacNN solving ¢(z,) = y; if that
was the case, then we would have

_ _ . . _
[yl = lim g(zn)] = +oo since  lim |g(2)| = +oo,

which would be a contradiction. In particular, this means that there is a radius R > 0

such that no solution z of g(z) = y lies in |z — 29| < R (because if the opposite was true,

namely that the disc Br(zo) contains a solution zg of g(z) = y for any R > 0, then as

R — 0 we could get a sequence of such solutions approaching z).
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